试题
题目:
如图,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分线.CD⊥AE,与AE的延长线交于D点,与AB的延长线交于F点.
求证:CD=
1
2
AE.
答案
证明:∵CD⊥AE,
∴∠ADC=90°,
∴∠4+∠3=90°,
∵∠ABC=90°,
∴∠1+∠2=90°,
∵∠3=∠2,
∴∠1=∠4,
在△CBF和△ABE中,
∠1=∠4
AB=CB
∠ABE=∠CBF=90°
,
∴△CBF≌△ABE(ASA),
∴CF=AE,
∵AE是∠BAC的角平分线,CD⊥AE,
∴∠1=∠CAD,∠ADC=∠ADF=90°,
在△ACD和△AFD中,
∠CAD=∠1
AD=AD
∠ADC=∠ADF=90°
,
∴△ACD≌△AFD(ASA),
∴CD=DF=
1
2
CF,
∵AE=CF,
∴CD=
1
2
AE.
证明:∵CD⊥AE,
∴∠ADC=90°,
∴∠4+∠3=90°,
∵∠ABC=90°,
∴∠1+∠2=90°,
∵∠3=∠2,
∴∠1=∠4,
在△CBF和△ABE中,
∠1=∠4
AB=CB
∠ABE=∠CBF=90°
,
∴△CBF≌△ABE(ASA),
∴CF=AE,
∵AE是∠BAC的角平分线,CD⊥AE,
∴∠1=∠CAD,∠ADC=∠ADF=90°,
在△ACD和△AFD中,
∠CAD=∠1
AD=AD
∠ADC=∠ADF=90°
,
∴△ACD≌△AFD(ASA),
∴CD=DF=
1
2
CF,
∵AE=CF,
∴CD=
1
2
AE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定与性质.
首先证明△CBF≌△ABE可得CF=AE,再证明△ACD≌△AFD可得CD=DF=
1
2
CF,再进行等量代换可得结论CD=
1
2
AE.
此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形全等的判定方法:SSS、SAS、AAS、ASA.证明三角形全等必须有边相等的条件.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )