试题

题目:
青果学院已知:如图,BF⊥AC于点F,CE⊥AB于点E,且BD=CD
求证:(1)△BDE≌△CDF;
(2)点D在∠A的平分线上.
答案
青果学院证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),
∴∠B=∠C(等角的余角相等);
在Rt△BED和Rt△CFD中,
∠B=∠C
BD=CD(已知)
∠BDE=∠CDF

∴△BED≌△CFD(ASA);

(2)连接AD.
由(1)知,△BED≌△CFD,
∴ED=FD(全等三角形的对应边相等),
∴AD是∠EAF的角平分线,即点D在∠A的平分线上.
青果学院证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),
∴∠B=∠C(等角的余角相等);
在Rt△BED和Rt△CFD中,
∠B=∠C
BD=CD(已知)
∠BDE=∠CDF

∴△BED≌△CFD(ASA);

(2)连接AD.
由(1)知,△BED≌△CFD,
∴ED=FD(全等三角形的对应边相等),
∴AD是∠EAF的角平分线,即点D在∠A的平分线上.
考点梳理
全等三角形的判定与性质.
(1)根据全等三角形的判定定理ASA证得△BED≌△CFD;
(2)连接AD.利用(1)中的△BED≌△CFD,推知全等三角形的对应边ED=FD.因为角平分线上的点到角的两边的距离相等,所以点D在∠A的平分线上.
本题考查了全等三角形的判定与性质.常用的判定方法有:ASA,AAS,SAS,SSS,HL等,做题时需灵活运用.
证明题.
找相似题