答案

证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),
∴∠B=∠C(等角的余角相等);
在Rt△BED和Rt△CFD中,
,
∴△BED≌△CFD(ASA);
(2)连接AD.
由(1)知,△BED≌△CFD,
∴ED=FD(全等三角形的对应边相等),
∴AD是∠EAF的角平分线,即点D在∠A的平分线上.

证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),
∴∠B=∠C(等角的余角相等);
在Rt△BED和Rt△CFD中,
,
∴△BED≌△CFD(ASA);
(2)连接AD.
由(1)知,△BED≌△CFD,
∴ED=FD(全等三角形的对应边相等),
∴AD是∠EAF的角平分线,即点D在∠A的平分线上.