试题
题目:
如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证:
(1)AE⊥BE;
(2)AE、BE分别平分∠BAD及∠ABC.
答案
证明:(1)过E作EF∥BC,
∵E是CD的中点,
∴F为AB中点,
∴EF是梯形ABCD的中位线,
则EF=
1
2
(AD+BC)=
1
2
AB,
∴AE⊥BE(直角三角形斜边的中线等于斜边的一半);
(2)∵EF是梯形ABCD的中位线,
∴AD∥EF,
∴∠AEF=∠EAD,
∵AF=EF,
∴∠AEF=∠EAF,
∴∠EAD=∠EAF,
∴AE平分∠BAD,
同理可证得:BE平分∠ABC.
证明:(1)过E作EF∥BC,
∵E是CD的中点,
∴F为AB中点,
∴EF是梯形ABCD的中位线,
则EF=
1
2
(AD+BC)=
1
2
AB,
∴AE⊥BE(直角三角形斜边的中线等于斜边的一半);
(2)∵EF是梯形ABCD的中位线,
∴AD∥EF,
∴∠AEF=∠EAD,
∵AF=EF,
∴∠AEF=∠EAF,
∴∠EAD=∠EAF,
∴AE平分∠BAD,
同理可证得:BE平分∠ABC.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
(1)过E作EF∥BC,利用中位线定理及直角三角形的斜边中线等于斜边一半即可作出解答;
(2)利用EF=AF及平行线的性质即可作出证明.
本题考查梯形与直角三角形得结合,难度不大,作出辅助线是解答本题的关键.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )