试题
题目:
如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.
答案
证明:∵FC∥AB,
∴∠A=∠FCE,
在△ADE和△CFE中
∠AED=∠FEC
∠A=∠FCE
DE=EF
∴△ADE≌△CFE(AAS),
∴AD=CF.
证明:∵FC∥AB,
∴∠A=∠FCE,
在△ADE和△CFE中
∠AED=∠FEC
∠A=∠FCE
DE=EF
∴△ADE≌△CFE(AAS),
∴AD=CF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据平行线性质求出∠A=∠FCE,根据AAS推出△ADE≌△CFE即可.
本题考查了全等三角形的性质和判定和平行线的性质的应用,注意:全等三角形的对应边相等.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )