试题

题目:
青果学院已知:如图,在平面直角坐标系xOy中,A(-2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.
(1)求点C的坐标及∠COA的度数;
(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,直接写出S△POM+S△BOM的值.
答案
解:(1)作CD⊥x轴于点D,
∴∠CDA=90°.
∵∠AOB=90°,
∴∠AOB=∠CDA.
∴∠DAC+∠DCA=90°.
∵AC⊥AB,
∴∠BAC=∠BAD+∠CAD=90°,
∴∠BAD=∠ACD.
在△AOB和△CDA中
∠AOB=∠CDA
∠BAD=∠ACD
BA=AC
青果学院
∴△AOB≌△CDA(AAS),
∴AO=CD,OB=DA.
∵A(-2,0),B(0,4),
∴OA=2,OB=4,
∴CD=2,DA=4,
∴OD=2,
∴OD=CD.
∵点C在第四象限,
∴C(2,-2).
∵∠CDO=90°,
∴∠COD=45°.
∴∠COA=180°-45°=135°.
(2)∵PC∥x轴,
∴点P到x轴的距离相等,
∴S△POM=S△COM
∴S△POM+S△BOM=S△COM+S△BOM=S△BOC
∴S△POM+S△BOM=S△BOC=
4×2
2
=4.
故答案为:4.
解:(1)作CD⊥x轴于点D,
∴∠CDA=90°.
∵∠AOB=90°,
∴∠AOB=∠CDA.
∴∠DAC+∠DCA=90°.
∵AC⊥AB,
∴∠BAC=∠BAD+∠CAD=90°,
∴∠BAD=∠ACD.
在△AOB和△CDA中
∠AOB=∠CDA
∠BAD=∠ACD
BA=AC
青果学院
∴△AOB≌△CDA(AAS),
∴AO=CD,OB=DA.
∵A(-2,0),B(0,4),
∴OA=2,OB=4,
∴CD=2,DA=4,
∴OD=2,
∴OD=CD.
∵点C在第四象限,
∴C(2,-2).
∵∠CDO=90°,
∴∠COD=45°.
∴∠COA=180°-45°=135°.
(2)∵PC∥x轴,
∴点P到x轴的距离相等,
∴S△POM=S△COM
∴S△POM+S△BOM=S△COM+S△BOM=S△BOC
∴S△POM+S△BOM=S△BOC=
4×2
2
=4.
故答案为:4.
考点梳理
全等三角形的判定与性质;坐标与图形性质.
(1)作CD⊥x轴于点D,根据条件证明△AOB≌△CDA就可以得出AO=CD,连接OC根据OD=OC就可以求出∠COD=45°,从而得出结论;
(2)根据等底等高的两三角形的面积相等就可以得出S△POM+S△BOM=S△COM+S△BOM=S△BOC.而得出结论.
本题考查了坐标与图形的性质的运用,全等三角形的判定与性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.
找相似题