答案
(1)

证明:∵AD为△ABC的角平分线,
∴∠1=∠2.
∵CE∥AD,
∴∠1=∠E,∠2=∠3.
∴∠E=∠3.
∴AC=AE.
∵F为EC的中点,
∴AF⊥EC,
∵AD∥EC,
∴∠AFE=∠FAD=90°.
∴AF⊥AD.
(2)解:延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,
∴∠3=∠C,∠F=∠4.

∵M为BC的中点
∴BM=CM.
在△BFM和△CNM中,
∴△BFM≌△CNM(AAS),
∴BF=CN,
∵MN∥AD,
∴∠1=∠E,∠2=∠4=∠5.
∴∠E=∠5=∠F.
∴AE=AN,BE=BF.
设CN=x,则BF=x,AE=AN=AC-CN=7-x,BE=AB+AE=4+7-x.
∴4+7-x=x.
解得 x=5.5.
∴CN=5.5.
(1)

证明:∵AD为△ABC的角平分线,
∴∠1=∠2.
∵CE∥AD,
∴∠1=∠E,∠2=∠3.
∴∠E=∠3.
∴AC=AE.
∵F为EC的中点,
∴AF⊥EC,
∵AD∥EC,
∴∠AFE=∠FAD=90°.
∴AF⊥AD.
(2)解:延长BA与MN延长线于点E,过B作BF∥AC交NM延长线于点F,
∴∠3=∠C,∠F=∠4.

∵M为BC的中点
∴BM=CM.
在△BFM和△CNM中,
∴△BFM≌△CNM(AAS),
∴BF=CN,
∵MN∥AD,
∴∠1=∠E,∠2=∠4=∠5.
∴∠E=∠5=∠F.
∴AE=AN,BE=BF.
设CN=x,则BF=x,AE=AN=AC-CN=7-x,BE=AB+AE=4+7-x.
∴4+7-x=x.
解得 x=5.5.
∴CN=5.5.