试题

题目:
正方形四边条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)如图1,当点E在线段BC上(不与点B、C重合)时:
①判断△ADG与△ABE是否全等,并说明理由;
②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;
(2)如图2,当点E在射线CN上(不与点C重合)时:
①判断△ADG与△ABE是否全等,不需说明理由;
②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.
青果学院
答案
解:(1)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△BAE≌△DAG;

②CH=BE.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射线CD上,
∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,青果学院
∴EH=AD=BC,
∴CH=BE.

(2)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ADG=∠ABE=90°,
∴在Rt△BAE与Rt△DAG中,
∴△BAE≌△DAG;(HL)

②由(1)同理可得:△EFH≌△AGD,△EFH≌△AEB,
∴GD=FH=CH=4,
∴△CFH的面积为:
1
2
FH·CH=
1
2
×4×4=8.
解:(1)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△BAE≌△DAG;

②CH=BE.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射线CD上,
∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,青果学院
∴EH=AD=BC,
∴CH=BE.

(2)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ADG=∠ABE=90°,
∴在Rt△BAE与Rt△DAG中,
∴△BAE≌△DAG;(HL)

②由(1)同理可得:△EFH≌△AGD,△EFH≌△AEB,
∴GD=FH=CH=4,
∴△CFH的面积为:
1
2
FH·CH=
1
2
×4×4=8.
考点梳理
全等三角形的判定与性质.
(1)①利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
②利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
(2)①利用HL定理证明△BAE≌△DAG即可;
②利用△EFH≌△GAD,△EFH≌△ABE,即可得出GD=FH=CH=4,再利用△CFH的面积公式求出.
此题考查了相似三角形的判定与性质;正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例,综合性较强,有一定的难度.
找相似题