试题
题目:
如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.
(1)图①中有
3
3
对全等三角形,并把它们写出来
△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD
△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD
;
(2)求证:BD与EF互相平分于G;
(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.
答案
3
△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD
解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.
(2)∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中,
AF=CE
AB=CD
,
∴Rt△ABF≌Rt△CED(HL),
∴ED=BF.
由∠AFB=∠CED=90°得DE∥BF,
∴∠EDG=∠GBF,
∵∠EGD和∠FGB是对顶角,ED=BF,
△DEG≌△BFG,
∴EG=FG,DG=BG,
所以BD与EF互相平分于G;
(3)第(2)题中的结论成立,
理由:∵AE=CF,
∴AE-EF=CF-EF,即AF=CE,
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,
在Rt△ABF和Rt△CDE中,
AF=CE
AB=CD
,
∴Rt△ABF≌Rt△CED(HL),
∴BF=ED.
∵∠BFG=∠DEG=90°,
∴BF∥ED,
∴∠FBG=∠EDG,
∴△BFG≌△DEG,
∴FG=GE,BG=GD,
即第(2)题中的结论仍然成立.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD可判断全等三角形的个数.
(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.
(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.
此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )