试题

题目:
青果学院如图,已知点M、N分别在等边△ABC(等边三角形满足三边都相等,三内角都等于60°)的边BC、CA上,AM、BN交于点Q,且∠AQN=60°.
求证:AM=BN.
答案
青果学院证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
∴∠CBN+∠ABN=60°,
∵∠AQN=∠BAM+∠ABN=60°,
∴∠BAM=∠CBN.
在△ABM与△BCN中,
∠ABC=∠C
AB=BC
∠BAM=∠CBN

∴△ABM≌△BCN(ASA),
∴AM=BN.
青果学院证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
∴∠CBN+∠ABN=60°,
∵∠AQN=∠BAM+∠ABN=60°,
∴∠BAM=∠CBN.
在△ABM与△BCN中,
∠ABC=∠C
AB=BC
∠BAM=∠CBN

∴△ABM≌△BCN(ASA),
∴AM=BN.
考点梳理
全等三角形的判定与性质;等边三角形的性质.
先由等边三角形的性质得出AB=BC,∠ABC=∠C=60°,再结合三角形外角的性质证明∠BAM=∠CBN.然后由ASA得出△ABM≌△BCN,根据全等三角形的对应边相等即可证明AM=BN.
本题考查了等边三角形的性质,全等三角形的判定与性质,难度适中,根据等边三角形及三角形外角的性质证明出∠BAM=∠CBN是解题的关键.
证明题.
找相似题