试题
题目:
如图,已知四边形ABCD中,BA>BC,DA=DC,BD平分∠ABC,请你猜想∠A与∠C的数量关系,并证明你的猜想.
答案
答:∠A+∠C=180°.
证明:过D作DM⊥AB于M,DN⊥BC于N,
∵BD平分∠ABC,
∴∠AMD=∠N=90°,DM=DN,
在Rt△AMD和Rt△CND中,
AD=DC
DM=DN
∴Rt△AMD≌Rt△CND(HL),
∴∠DCN=∠A,
∵∠BCD+∠DCN=180°,
∴∠A+∠BCD=180°.
答:∠A+∠C=180°.
证明:过D作DM⊥AB于M,DN⊥BC于N,
∵BD平分∠ABC,
∴∠AMD=∠N=90°,DM=DN,
在Rt△AMD和Rt△CND中,
AD=DC
DM=DN
∴Rt△AMD≌Rt△CND(HL),
∴∠DCN=∠A,
∵∠BCD+∠DCN=180°,
∴∠A+∠BCD=180°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
过D作DM⊥AB于M,DN⊥BC于N,求出DM=DN,根据HL证Rt△AMD≌Rt△CND,推出∠DCN=∠A,根据∠BCD+∠DCN=180°推出即可.
本题考查了角平分线性质,全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )