试题
题目:
(2010·丰台区二模)已知:如图,在△ABC中,AD⊥BC于点D,E为AD上一点,BE=AC,∠ABD=∠BAD.
求证:DE=DC.
答案
证明:∵AD⊥BC于点D,
∴∠ADB=∠ADC=90°.(1分)
∵∠ABD=∠BAD,
∴AD=BD.(2分)
在Rt△BDE和Rt△ADC中,
∵
BE=AC
BD=AD.
∴△BDE≌△ADC.(HL)(4分)
∴DE=DC.(5分)
证明:∵AD⊥BC于点D,
∴∠ADB=∠ADC=90°.(1分)
∵∠ABD=∠BAD,
∴AD=BD.(2分)
在Rt△BDE和Rt△ADC中,
∵
BE=AC
BD=AD.
∴△BDE≌△ADC.(HL)(4分)
∴DE=DC.(5分)
考点梳理
考点
分析
点评
全等三角形的判定与性质.
由题意推出AD=BD,即可推出△BDE≌△ADC,便可推出结论.
本题主要考查等腰三角形的判定和性质、全等三角形的判定和性质,关键在于根据∠ABD=∠BAD推出AD=BD,推出△BDE≌△ADC.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )