试题
题目:
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.
答案
证明:∵AF∥BC,
∴∠AFE=∠DCE,
又∵E为AD的中点,
∴AE=DE,
在△AFE和△DCE中,
∠AFE=∠DCE,∠FEA=∠DEC(对顶角相等),AE=ED,
∴△AFE≌△DCE(AAS),
∴AF=DC,
而AF=BD,
∴BD=DC,
即D是BC的中点.
证明:∵AF∥BC,
∴∠AFE=∠DCE,
又∵E为AD的中点,
∴AE=DE,
在△AFE和△DCE中,
∠AFE=∠DCE,∠FEA=∠DEC(对顶角相等),AE=ED,
∴△AFE≌△DCE(AAS),
∴AF=DC,
而AF=BD,
∴BD=DC,
即D是BC的中点.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据平行线的性质得到∠AFE=∠DCE,由中点的定义得到AE=DE,根据三角形全等的判定易证得△AFE≌△DCE,利用全等三角形的性质得AF=DC,而AF=BD,即可得到D是BC的中点.
本题考查了全等三角形的判定与性质:有两组对应角相等,且一组对应角所对的边对应相等的两个三角形全等;全等三角形的对应边相等.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )