试题
题目:
如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.
答案
证明:如图,延长CE、BA交于F.
∵CE⊥BD,
∴∠BEF=∠BEC=90°,
∴∠1=∠2,
在△BEF和△BEC中,
∠BEF=∠BEC
BE=BE
∠1=∠2
∴△BEF≌△BEC(ASA),
∴EF=EC,
∴CF=2CE,
∵∠BAC=90°,
∴∠FAC=90°=∠BAC
∵CE⊥BD,
∴∠ACF=∠1,
在△ACF和△ABD中,
∠FAC=∠BAD
AC=AB
∠ACF=∠1
∴△ACF≌△ABD(ASA),
∴BD=CF,
∴BD=2CE.
证明:如图,延长CE、BA交于F.
∵CE⊥BD,
∴∠BEF=∠BEC=90°,
∴∠1=∠2,
在△BEF和△BEC中,
∠BEF=∠BEC
BE=BE
∠1=∠2
∴△BEF≌△BEC(ASA),
∴EF=EC,
∴CF=2CE,
∵∠BAC=90°,
∴∠FAC=90°=∠BAC
∵CE⊥BD,
∴∠ACF=∠1,
在△ACF和△ABD中,
∠FAC=∠BAD
AC=AB
∠ACF=∠1
∴△ACF≌△ABD(ASA),
∴BD=CF,
∴BD=2CE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.
本题考查全等三角形的判定与性质.解决本题主要是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )