试题
题目:
如图,已知C是线段AB上任意一点(C点不与A、B重合),分别以AC、BC为边在直线AB的同侧作等边△ACD和等边△BCE,AE与CD相交于点M,BD与CE相交于点N.求证:
(1)△ACE≌△DCB;
(2)MN∥AB.
答案
解:(1)∵△ACD和△BCE是等边三角形,
∴AC=DC,BC=EC,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中
AC=DC
∠ACE=∠DCB
CE=CB
,
∴△ACE≌△DCB(SAS);
(2)∵△ACE≌△DCB,
∴∠CAE=∠CDB.
∵∠ACD+∠DCE+∠BCE=180°,
∴∠DCE=60°,
∴∠DCE=∠ACD.
在△DCN和△ACM中
∠CAE=∠CDB
AC=DC
∠DCE=∠ACD
,
∴△DCN≌△ACM(ASA),
∴CN=CM.
∵∠DCE=60°,
∴△MCN是等边三角形,
∴∠MNC=60°,
∴∠CNM=∠BCN,
∴MN∥AB.
解:(1)∵△ACD和△BCE是等边三角形,
∴AC=DC,BC=EC,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中
AC=DC
∠ACE=∠DCB
CE=CB
,
∴△ACE≌△DCB(SAS);
(2)∵△ACE≌△DCB,
∴∠CAE=∠CDB.
∵∠ACD+∠DCE+∠BCE=180°,
∴∠DCE=60°,
∴∠DCE=∠ACD.
在△DCN和△ACM中
∠CAE=∠CDB
AC=DC
∠DCE=∠ACD
,
∴△DCN≌△ACM(ASA),
∴CN=CM.
∵∠DCE=60°,
∴△MCN是等边三角形,
∴∠MNC=60°,
∴∠CNM=∠BCN,
∴MN∥AB.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等边三角形的性质.
(1)根据等边三角形的性质可以得出AC=DC,BC=EC,∠ACD=∠BCE=60°,就可以求出∠ACE=∠DCB=120°,由边角边就可以得出△ACE≌△DCB,
(2)根据条件可以得出△DCN≌△ACM,就有CM=CM.就可以得出△CNM是等边三角形,就可以得出∠CNM=∠BCN=60°,就有MN∥AB.
本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,平行线的判定的运用,解答时证明三角形全等是关键.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )