试题

题目:
青果学院如图,∠1=∠2,AC=AD,∠C=∠D,若AB=4cm,BC=3cm,AC=2cm,则DE的长是(  )



答案
B
解:∵∠1=∠2,
∴∠1+∠EAB=∠2+∠EAB,
即∠BAC=∠EAD.
在△BAC和△EAD中青果学院
∠C=∠D
AC=AD
∠BAC=∠EAD

∴△BAC≌△EAD(ASA),
∴BC=ED.
∵BC=3cm,
∴DE=3cm.
故选B.
考点梳理
全等三角形的判定与性质.
由∠1=∠2可以得出∠BAC=∠EAD,再证明△BAC≌△EAD就可以得出结论.
本题考查了等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
找相似题