试题
题目:
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①△BDF≌△CDE;②CE=BF;③BF∥CE;④△ABD和△ACD面积相等.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:①∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
BD=CD
∠BDF=CDE
DF=DE
,
∴△BDF≌△CDE;
②∵△BDF≌△CDE,
∴CE=BF;
③∵△BDF≌△CDE,
∴∠CED=∠BFD,
∴BF∥CE;
④∵AD是△ABC的中线,
∴S
△ABD
=S
△ACD
.
故选D.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
先利用SAS证明△BDF≌△CDE,再结合全等三角形的性质可得证②③,由于AD是△ABC的中线,由于等底同高,那么两个三角形的面积相等.
本题考查了全等三角形判定和性质,解题的关键是证明△BDF≌△CDE.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )