题目:

如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为( )
①∠OCP=∠OCP′; ②∠OPC=∠OP′C; ③PC=P′C; ④PP′⊥OC.
答案
C
解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;
②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;
③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;
④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.
故选C.