试题
题目:
如图,F是等边△ABC的边AC的中点,D在边BC上,△DFE是等边三角形,ED的延长线交AB于H,则下列结论:①∠AHD+∠AFD=180°,②AF=
1
2
BC,③CF+CE=CD,④
BH
BD
为定值,其中正确的是( )
A.①③
B.②③
C.①②③
D.①②④
答案
C
解:①∵△ABC,△DFE是等边三角形,
∴∠A=60°,∠FDE=60°,
∴∠HDF=120°,
∴∠AHD+∠AFD=360°-(120°+60°)=180°,故①正确;
②∵F是等边△ABC的边AC的中点,
∴AF=
1
2
AC=
1
2
BC,故②正确;
③在BC上截取CG=CF,连接FG.
∵△ABC是等边三角形,
∴∠ACB=60°,
∴△FCG是等边三角形,
∴FG=FC,∠GFC=60°,
∵△DFE是等边三角形,
∴FD=FE,∠DFE=60°,
∴∠DFG=∠EFC,
在△DFG与△EFC中,
FD=FE
∠DFG=∠EFC
FG=FC
,
∴△DFG≌△EFC.
∴DG=EC,
CF+CE=CD,故③正确;
④无法确定∠AHD的度数,
BH
BD
不为定值,故④错误.
故选C.
考点梳理
考点
分析
点评
等边三角形的性质;全等三角形的判定与性质.
①根据等边三角形的性质和四边形内角和为360°,可得∠AHD+∠AFD=180°;
②根据等边三角形的性质和中线的定义即可作出判断;
③在BC上截取CG═CF,连接FG,通过证明△DFG≌△EFC即可作出判断;
④由于无法确定∠AHD的度数,故
BH
BD
的值无法确定.
考查了等边三角形的性质,全等三角形的判定与性质,本题的难点是作出辅助线,构成全等三角形.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )