试题

题目:
青果学院如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点,下列结论:(1)BE=CD;(2)△AMN为等腰三角形;(3)∠AMN=90°-
∠MAN
2
,其中正确的有(  )



答案
C
解:在△ACD和△ABE中,
AC=AB
∠DAC=∠
DA=EA
EAB

∴△ACD≌△ABE,
∴CD=BE,所以①正确;
又∵M,N分别为BE,CD的中点,
∴AN=AM,
∴△AMN为等腰三角形,所以②正确;
∴∠AMN=∠ANM,
而∠AMN+∠ANM+∠MAN=180°,
∴2∠AMN=180°-∠MAN,
∴∠AMN=90°-
∠MAN
2
,所以③正确.
故选C.
考点梳理
全等三角形的判定与性质;等腰三角形的判定与性质.
根据全等三角形的判定易证得△ACD≌△ABE,利用全等的性质有CD=BE;由M,N分别为BE,CD的中点,得到AN和AM为全等三角形△ACD、△ABE的对应中线,根据全等的性质得到AM=AN,即可判断△AMN为等腰三角形;根据等腰三角形的性质得∠AMN=∠ANM,由三角形的内角和定理得到∠AMN+∠ANM+∠MAN=180°,易得∠AMN=90°-
∠MAN
2
本题考查了全等三角形的判定与性质:有两组对应边相等,且它们的夹角也相等的两个三角形全等;全等三角形的对应边相等,对应边上的中线相等.也考查了等腰三角形的判定与性质.
证明题.
找相似题