试题
题目:
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:
①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.
其中正确的有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:①∵AD是△ABC的中线,
∴BD=CDF,
∴△ABD和△ACD面积相等;
故①正确;
②若在△ABC中,当AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD.即②不一定正确;
③∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
BD=CD
∠BDF=∠CDE
DF=DE
,
∴△BDF≌△CDE(SAS).
故③正确;
④∵△BDF≌△CDE,
∴∠CED=∠BFD,
∴BF∥CE;
故④正确;
⑤∵△BDF≌△CDE,
∴CE=BF,
∴只有当AE=BF时,CE=AE.
故⑤不一定正确.
综上所述,正确的结论是:①③④,共有3个.
故选C.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
①△ABD和△ACD是等底同高的两个三角形,其面积相等;
②注意区分中线与角平分线的性质;
③由全等三角形的判定定理SAS证得结论正确;
④、⑤由③中的全等三角形的性质得到.
本题考查了全等三角形判定和性质,解题的关键是证明△BDF≌△CDE.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )