试题

题目:
青果学院如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①CE=BF;②AE=DF;③BF∥CE;④△BDF≌△CDE;⑤△ABD和△ACD面积相等.其中正确的有(  )



答案
C
解:作AG⊥BC于G,
∵AD是△ABC的中线,
∴BD=CD.青果学院
∴BD·AG=CD·AG,
BD·AG
2
=
CD·AG
2

∵S△ABD=
BD·AG
2
,S△ACD=
CD·AG
2

∴S△ABD=S△ACD,故⑤正确;
在△BDF和△CDE中,
BD=CD
∠BDF=∠CDE
DF=DE

∴△BDF≌△CDE(ASA),故④正确;
∴∠FBD=∠ECD,
BF=CE,故①正确
DF=DE,故②错误,
∴BF∥CE故③正确.
∴正确的有4个.
故选C.
考点梳理
全等三角形的判定与性质.
作AG⊥BC于G,根据中线的性质可以得出BD=CD,就可以表示出S△ABD=S△ACD,再由SAS就可以得出△BDF≌△CDE,就可以得出∠FBD=∠ECD,BF=CE,DF=DE,就可以得出BF∥CE,从而得出结论.
本题考查了全等三角形的判定与性质的运用,三角形中线的性质的运用,平行线的判定的运用,三角形的面积的等积变化的运用,解答时证明三角形全等是关键.
找相似题