试题
题目:
如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△CAN≌△ABM; ④CD=DN.其中正确的结论是( )
A.①②
B.②③
C.①②③
D.②③④
答案
C
解:∵在△AEB和△AFC中
∠B=∠C
∠E=∠F
AE=AF
∴△AEB≌△AFC,
∴BE=CF,∠EAB=∠FAC,
∴∠1+∠CAB=∠2+∠CAB
∴∠1=∠2,∴①②正确;
∵△AEB≌△AFC
∴AC=AB,
在△CAN和△ABM中
∠CAN=∠BAM
AC=AB
∠C=∠B
∴△ACN≌△BAM,∴③是正确的;
∵△ACN≌△BAM,
∴AM=AN,
又∵AC=AB
∴CM=BN,
在△CDM和△BDN中
∠C=∠B
∠CDM=∠BDN
CM=BN
∴△CDM≌△BDN,
∴CD=BD,
而DN与BD不一定相等,因而CD=DN不一定成立,∴④错误.
故正确的是:①②③.
故选C.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
根据E=∠F=90°,∠B=∠C,AE=AF利用AAS可以证得△AEB≌△AFC,进而证得△AEB≌△AFC,△CDM≌△BDN从而作出判断.
本题考查了全等三角形的判定与性质的应用,能正确证明=出两个三角形全等是解此题的关键,主要考查学生的体力能力.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )