试题
题目:
我市为治理海泊河污水问题,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.实际每天铺设多长管道?
答案
解:设原来每天铺设xm的管道,
3000
x
=
3000
(1+25%)x
+15,
x=40,
40(1+25%)=50m.
故实际每天铺设50m的管道.
解:设原来每天铺设xm的管道,
3000
x
=
3000
(1+25%)x
+15,
x=40,
40(1+25%)=50m.
故实际每天铺设50m的管道.
考点梳理
考点
分析
点评
分式方程的应用.
设原来每天铺设xm的管道,根据需要铺设一段全长为3000m的污水排放管道,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务可列方程求解.
本题考查分式方程的应用,关键设出计划铺设的,表示出实际铺设的,以时间做为等量关系列方程求解.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?