试题
题目:
在武汉江汉一桥维修工程中,拟由甲,乙两个工程队共同完成某项目,从两个工程队的资料可以知道:若两个工程队合作24天恰好完成;若两个工程队合作18天甲工程队单独做10天也恰好完成.请问:甲,乙两个工程队单独完成该项目各需多少天?
答案
解:(1)设甲工程队单独完成此项目需x天,乙工程队单独完成此项目需y天.
依题意得:
24
x
+
24
y
=1
(
1
x
+
1
y
)×18+
10
x
=1
.
解得:
x=40
y=60
.
答:甲工程队单独完成此项目需40天,乙工程队单独完成此项目需60天.
解:(1)设甲工程队单独完成此项目需x天,乙工程队单独完成此项目需y天.
依题意得:
24
x
+
24
y
=1
(
1
x
+
1
y
)×18+
10
x
=1
.
解得:
x=40
y=60
.
答:甲工程队单独完成此项目需40天,乙工程队单独完成此项目需60天.
考点梳理
考点
分析
点评
分式方程的应用.
若两个工程队合作24天恰好完成;若两个工程队合作18天后,甲工程队再单独做10天,也恰好完成.可得出两个等量关系:甲24天完成工作量+乙24天工作量=1;甲乙合作18天的工作量+甲单独做10天的工作量=1,由此可列出方程组求解.
本题考查了分式方程的应用.列方程解应用题的步骤是:一审(审题)二设(设出相应未知数)三列(根据等量关系和所设未知数列出方程)四解(解方程)五检验(检验是否是方程的解,是否符合实际问题含义)六回答(根据所问的进行回答),其中审题时找出等量关系是列方程解决实际问题的关键.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?