试题
题目:
某商场用32000元购进一批服装,上市后很好销售,因此商场马上又用68000元购进第二批这种服装,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)求该商场两次共购进这种服装多少套?
(2)如果前后这两批服装每套的售价相同,且商场要求全部售完后总利润率不低于20%,那么每套售价至少要多少元?
答案
解:(1)设商场第一次购进x套服装,则第二次购进服装2x套,由题意得:
68000
2x
-
32000
x
=10,
解这个方程,得x=200.
经检验,x=200是所列方程的根.
2x+x=2×200+200=600.
所以商场两次共购进这种运动服600套.
(2)设每套服装的售价为y元,由题意得:
600y-32000-68000
32000+68000
≥20%,
解这个不等式得y≥200,
所以每套服装的售价至少要200元.
解:(1)设商场第一次购进x套服装,则第二次购进服装2x套,由题意得:
68000
2x
-
32000
x
=10,
解这个方程,得x=200.
经检验,x=200是所列方程的根.
2x+x=2×200+200=600.
所以商场两次共购进这种运动服600套.
(2)设每套服装的售价为y元,由题意得:
600y-32000-68000
32000+68000
≥20%,
解这个不等式得y≥200,
所以每套服装的售价至少要200元.
考点梳理
考点
分析
点评
分式方程的应用;一元一次不等式的应用.
(1)先设商场第一次购进x套服装,就可以表示出第二次购进服装的套数,根据题目条件就可以列出方程,求出其解就可以.
(2)设每套服装的售价为y元,根据利润率=
售价-进价
进价
,建立不等式,求出其解就可以了.
本题考查了列分式方程解决实际问题的运用,列一元一次不等式组解实际问题的运用,在解答中注意分式方程的杨恩是解答的必须过程,这是容易被忽略的地方.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?