试题
题目:
(2013·莆田)统计学规定:某次测量得到n个结果x
1
,x
2
,…,x
n
.当函数y=
(x-
x
1
)
2
+
(x-
x
2
)
2
+…+
(x-
x
n
)
2
取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为
10.1
10.1
.
答案
10.1
解:根据题意得:
x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;
故答案为:10.1.
考点梳理
考点
分析
点评
专题
方差.
根据题意可知“量佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.
此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.
压轴题;新定义.
找相似题
(2013·太原)某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是
s
2
甲
=36,
s
2
乙
=30,则两组成绩的稳定性( )
(2013·台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s
2
甲
=0.63,s
2
乙
=0.51,s
2
丙
=0.48,s
2
丁
=0.42,则四人中成绩最稳定的是( )
(2013·台湾)某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?( )
年龄(岁)
36
38
39
43
46
48
50
55
58
60
62
65
次数(人)
4
5
7
5
5
2
1
10
7
8
3
3
(2013·泉州)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
选手
甲
乙
丙
丁
方差(环
2
)
0.035
0.016
0.022
0.025
则这四个人种成绩发挥最稳定的是( )
(2013·衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )