试题
题目:
甲乙两人在相同条件下,各打靶5次,环数如下:甲:6、8、9、9、8; 乙:10、7、7、7、9,则甲乙两人射击成绩( )
A.甲比乙稳定
B.乙比甲稳定
C.甲乙相同
D.无法比较
答案
A
解:甲的平均数=(6+8+9+9+8)÷5=8,甲的方差S
甲
2
=[(6-8)
2
+(8-8)
2
+(9-8)
2
+(9-8)
2
+(8-8)
2
]÷5=1.2;
乙的平均数=(10+7+7+7+9)÷5=8,乙的方差S
乙
2
=[(8-10)
2
+(8-7)
2
+(8-7)
2
+(8-7)
2
+(8-9)
2
]÷5=1.6;
∴S
甲
2
<S
乙
2
,
∴甲比乙稳定.
故选A.
考点梳理
考点
分析
点评
专题
方差.
根据平均数和方差的概念分别计算出平均数和方差,然后进行判断.
考查了平均数和方差的概念,一般地设n个数据,x
1
,x
2
,…x
n
的平均数为
.
x
,方差S
2
=
1
n
[(x
1
-
.
x
)
2
+(x
2
-
.
x
)
2
+…+(x
n
-
.
x
)
2
],它反映了一组数据的波动大小,方差越大,波动性越大反之也成立.
计算题.
找相似题
(2013·太原)某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是
s
2
甲
=36,
s
2
乙
=30,则两组成绩的稳定性( )
(2013·台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s
2
甲
=0.63,s
2
乙
=0.51,s
2
丙
=0.48,s
2
丁
=0.42,则四人中成绩最稳定的是( )
(2013·台湾)某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?( )
年龄(岁)
36
38
39
43
46
48
50
55
58
60
62
65
次数(人)
4
5
7
5
5
2
1
10
7
8
3
3
(2013·泉州)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
选手
甲
乙
丙
丁
方差(环
2
)
0.035
0.016
0.022
0.025
则这四个人种成绩发挥最稳定的是( )
(2013·衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )