试题
题目:
如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE
(1)求证:BE=CE;
(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.
答案
证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,
∴AB=DC,∠BAE=∠CDE,AE=DE,
在△BAE与△CDE中,
AB=DC
∠BAE=∠CDE
AE=DE
,
∴△BAE≌△CDE,
∴BE=CE;
(2)延长CD和BE的延长线交于H,
∵BF⊥CD,∠HEC=90°,
∴∠EBF+∠H=∠ECH+∠H=90°
∴∠EBF=∠ECH,
又∵∠BEC=∠CEH=90°,
BE=CE(已证),
∴△BEG≌△CEH,
∴EG=EH,BG=CH=DH+CD,
∵△BAE≌△CDE(已证),
∴∠AEB=∠GED,
∠HED=∠AEB,
∴∠GED=∠HED,
又∵EG=EH(已证),ED=ED,
∴△GED≌△HED,
∴DG=DH,
∴BG=DG+CD.
证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,
∴AB=DC,∠BAE=∠CDE,AE=DE,
在△BAE与△CDE中,
AB=DC
∠BAE=∠CDE
AE=DE
,
∴△BAE≌△CDE,
∴BE=CE;
(2)延长CD和BE的延长线交于H,
∵BF⊥CD,∠HEC=90°,
∴∠EBF+∠H=∠ECH+∠H=90°
∴∠EBF=∠ECH,
又∵∠BEC=∠CEH=90°,
BE=CE(已证),
∴△BEG≌△CEH,
∴EG=EH,BG=CH=DH+CD,
∵△BAE≌△CDE(已证),
∴∠AEB=∠GED,
∠HED=∠AEB,
∴∠GED=∠HED,
又∵EG=EH(已证),ED=ED,
∴△GED≌△HED,
∴DG=DH,
∴BG=DG+CD.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;全等三角形的判定与性质.
(1)由已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,可推出△BAE≌△CDE,得证.
(2)首先延长CD和BE交点H,通过证明三角形全等,证得BG=DG+CD
此题考查的知识点是等腰梯形的性质和全等三角形的判定与性质,此题的关键是由等腰梯形的性质证明三角形全等推出结论.
证明题;压轴题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )