试题
题目:
(2010·永嘉县二模)阅读下题及证明过程:
已知:如图,在△ABC中,点D是BC上的一点,点E是AD上的一点,且EB=EC,∠ABE=∠ACE
求证:∠BAE=∠CAE
证明:在△AEB和△AEC中
EB=EC( )
∠ABE=∠ACE( )
AE=AE( )
∴△AEB≌△AEC( )
∴∠BAE=∠CAE( )
上面的证明过程是否正确?若认为正确,请在各步后面的括号内填入依据:若认为不正确,请给予正确的证明.
答案
解:上面的证明过程不正确.
正确的证明如下.
证明:在△EBC中,
∵EB=EC,
∴∠EBC=∠ECB,
又∵∠ABE=∠ACE,
∴∠EBC+∠ABE=∠ECB+∠ACE,即∠ABC=∠ACB;
∴AB=AC,
∵AE=AE,
∴△ABE≌△ACE(SSS);
∴∠BAE=∠CAE.
解:上面的证明过程不正确.
正确的证明如下.
证明:在△EBC中,
∵EB=EC,
∴∠EBC=∠ECB,
又∵∠ABE=∠ACE,
∴∠EBC+∠ABE=∠ECB+∠ACE,即∠ABC=∠ACB;
∴AB=AC,
∵AE=AE,
∴△ABE≌△ACE(SSS);
∴∠BAE=∠CAE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
仔细观察可得到上面的证明过程是不正确的,应该根据角之间的关系从而得到AB=AC;再根据SSS判定△ABE≌△ACE,全等三角形的对应角相等所以∠BAE=∠CAE.
此题主要考查学生对全等三角形的判定方法的理解及运用,常用的方法有AAS、SAS、SSS等.注意SSA或AAA是不能证明三角形全等的.
阅读型.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )