试题
题目:
(2013·杨浦区二模)如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为
6-2
3
6-2
3
cm.(结果保留根号)
答案
6-2
3
解:如图:连接B′B″,
∵在Rt△ABC中,AB=12,∠A=30°,
∴BC=
1
2
AB=6,AC=6
3
,
∴B′C=6,
∴AB′=AC-B′C=6
3
-6,
∵B′C∥B″C″,B′C=B″C″,
∴四边形B″C″CB′是矩形,
∴B″B′∥BC,B″B′=C″C,
∴△AB″B′∽△ABC,
∴
AB′
AC
=
B″B′
BC
,
即:
6
3
-6
6
3
=
B″B′
6
,
解得:B″B′=6-2
3
.
∴C″C=B″B′=6-2
3
.
故答案为:6-2
3
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平移的性质;旋转的性质.
首先根据题意作图,然后连接B′B″,由在Rt△ABC中,AB=12,∠A=30°,即可求得AC与BC的值,则可得AB′的值,又由B′C∥B″C″,B′C=B″C″,四边形B″C″CB′是矩形,可得△AB″B′∽△ABC,然后根据相似三角形的对应边成比例,即可求得答案.
此题考查了相似三角形的判定与性质,旋转与平移的性质,以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在正方形ABCD中,M为AB的中点,直线DM交AC于N,交BC的延长线于P
(1)求证:PM:MN:ND=3:1:2;
(2)当M为AB三等分点(AM═
1
3
AB)时,其它条件不变,PM:MN:ND的值又有怎样的关系?请你写出猜想,并加以证明;
(3)当M为AB的n等分点时,其它条件不变,PM:MN:ND又有怎样的关系?直接写出你的猜想,不必证明.
如图,在Rt△ABC中,∠C=90°,AC=15,BC=10,四边形CDEF是正方形,连接AF交DE于点G.求正方形CDEF的边长和EG的长.
如图,·ABCD中,点E是CD延长线上一点,BE交AD于点F,DE=
1
2
CD.
(1)求证:△ABF∽△CEB
(2)若△DEF的面积为2,求·ABCD的面积.
(3)若G、H分别为BF、AB的中点,AG、FH交于点O,求
OG
OA
.
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.
(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n
.
(3)当OE=1时,S
△EBF
=S
1
;OE=2时,S
△EBF
=S
2
;…,OE=n时,S
△EBF
=S
n
.则S
1
+S
2
+…+S
n
=
2n
2n
.(直接写出答案)