全等三角形的判定与性质;等边三角形的性质.
由三角形ABC为等边三角形,根据等边三角形的性质可知三边相等,三内角都为60°,可得AC=CB,∠A=∠ACB=60°,又AD=CE,利用SAS的方法可得三角形ADC与三角形CEB全等;根据全等三角形的对应角相等可得∠ACD=∠CBE,又∠ACB=∠ACD+∠DCB=60°,等量代换可得∠CBE+∠DCB=60°,最后利用三角形的内角和定理即可求出∠BPC的度数.
此题考查了全等三角形的判定与性质,等边三角形的性质,以及三角形的内角和定理,利用了转化的思想,熟练掌握性质及定理是解本题的关键.