试题
题目:
小刚设计了一个玩具模型,如图所示,其中AB=AC,CD⊥AB于点D,BE⊥AC于点E,CD、BE相交于点O,为了使图形美观,小刚希望AO恰好平分∠BAC,他的这个愿望能实现吗?请你帮他说明理由.
答案
解:能实现.
理由:∵CD⊥AB于点D,BE⊥AC于点E,
∴∠AEB=∠ADC=90°,
在△ABE和△ACD中,
∠AEB=∠ADC
∠BAE=∠CAD(公共角)
AB=AC
,
∴AD=AE,
在Rt△ADO和Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠EAO,
∴AO平分∠BAC.
解:能实现.
理由:∵CD⊥AB于点D,BE⊥AC于点E,
∴∠AEB=∠ADC=90°,
在△ABE和△ACD中,
∠AEB=∠ADC
∠BAE=∠CAD(公共角)
AB=AC
,
∴AD=AE,
在Rt△ADO和Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠EAO,
∴AO平分∠BAC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
先根据角角边判定△ABE和△ACD全等,根据全等三角形对应边相等得到AD=AE,再根据斜边直角边定理证明△ADO和△AEO全等,然后利用全等三角对应角相等即可证明AO平分∠BAC.
本题考查了三角形全等的判定及性质;本题两次证明三角形全等和全等三角形的性质,熟练掌握判定定理和性质是解题的关键.
操作型.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )