试题
题目:
如图,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,则∠BAC=
80°
80°
.
答案
80°
解:在△ABC和△DCB中,
AB=DC
∠ABC=∠DCB
BC=CB
,
∴△ABC≌△DCB(SAS),
∴∠ACB=∠DBC.
∵∠ABD=40°,∠ABC=70°,
∴∠DBC=30°.
∴∠ACB=30°.
∵∠ABC+∠ACB+∠BAC=180°,
∴∠BAC=80°.
故答案为:80°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
由条件先证明△ABC≌△DCB就可以得出∠ACB=∠DBC=30°,由三角形的内角和定理就可以求出∠BAC的度数.
本题考查了全等三角形的判定及性质的运用,三角形内角和定理的运用,解答时证明三角形全等是关键.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )