试题
题目:
如图以△ABC的边AB、AC向外作等边△ABE和△ACD,连接BD、CE,问:线段CE和BD有什么数量关系?证明你的结论.
答案
解:CE=BD;
证明如下:
∵△ABE和△ACD是等边三角形,
∴AB=AE,AD=AC,∠BAE=∠CAD=60°,
∴∠BAE+∠BAC=∠CAD+∠BAC,
即∠CAE=∠BAD,
∴△ABD≌△ACE(SAS),
∴CE=BD.
解:CE=BD;
证明如下:
∵△ABE和△ACD是等边三角形,
∴AB=AE,AD=AC,∠BAE=∠CAD=60°,
∴∠BAE+∠BAC=∠CAD+∠BAC,
即∠CAE=∠BAD,
∴△ABD≌△ACE(SAS),
∴CE=BD.
考点梳理
考点
分析
点评
专题
等边三角形的性质;全等三角形的判定与性质.
由等边三角形的性质,不难看出CE与BD之间的关系,即求解△ABD与△ACE全等即可.
本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得∠CAE=∠BAC是正确解答本题的关键.
探究型.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )