试题
题目:
如图△ABC中,AD平分∠BAC,且AB+BD=AC,若∠B=62°,则∠C=
31°
31°
.
答案
31°
解:如图,在AC上截取AE=AB,连接DE,
∵AD平分∠BAC,
∴∠BAD=∠EAD,
而AD是公共边,
∴△ABD≌△ADE,
∴∠B=∠AED=62°,DE=BD,
而AB+BD=AC=AE+CE,
∴DE=CE,
∴∠EDC=∠C,
而∠AED=∠C+∠EDC=62°,
∴∠C=31°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
如图,在AC上截取AE=AB,连接DE,可以证明△ABD≌△ADE,然后利用全等三角形的性质和已知条件可以证明△DEC是等腰三角形,接着利用等腰三角形的性质即可求解.
此题主要考查了全等三角形的性质与判定,也考查了角平分线的性质,解题的关键是根据已知条件构造全等三角形,一般可以利用角平分线构造全等三角形解决问题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )