试题
题目:
已知,如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BD=CF,DC=BE,若∠A=70°,∠EDF=
55
55
°.
答案
55
解:∵AB=AC,∠A=70°
∴∠B=∠C=55°
又∵BD=CF,BE=CD,
∴△BDE≌△CFD,∴∠BDE=∠CFD
∠EDF=180°-(∠BDE+∠CDF)=180°-(∠CFD+∠CDF)=180°-(180°-∠C)=55°,
∴∠EDF=55°.
故答案为:55.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.
本题主要考查了全等三角形的判定及性质问题,能够熟练掌握.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )