试题
题目:
如图,△ABC中,AB=AC,D是BC的中点,∠AED=∠AFD=90゜,AE=AF,
求证:∠1=∠2.
答案
证明:连接AD,
∵AB=AC,D是BC的中点,
∴AD⊥BC,
即∠ADB=∠ADC=90°,
∵∠AED=∠AFD=90゜,
∴△AED和△AFD为直角三角形,
在Rt△AED和Rt△AFD中,
∵
AD=AD
AE=AF
,
∴Rt△AED≌Rt△AFD(HL),
∴∠ADE=∠ADF,
∵∠ADB=∠ADC=90°,
∴∠1=∠2.
证明:连接AD,
∵AB=AC,D是BC的中点,
∴AD⊥BC,
即∠ADB=∠ADC=90°,
∵∠AED=∠AFD=90゜,
∴△AED和△AFD为直角三角形,
在Rt△AED和Rt△AFD中,
∵
AD=AD
AE=AF
,
∴Rt△AED≌Rt△AFD(HL),
∴∠ADE=∠ADF,
∵∠ADB=∠ADC=90°,
∴∠1=∠2.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的性质.
连接AD,根据AB=AC,D为BC中点,可得AD⊥BC,得出∠ADB=∠ADC=90°,然后根据∠AED=∠AFD=90゜,AE=AF,AD=AD,可证明△AED≌△AFD,可得∠AED=∠AFD,继而可得出∠1=∠2.
本题考查了全等三角形的判定与性质,解答本题的关键是根据等腰三角形三线合一的性质证明垂直,要求同学们熟练掌握全等三角形的判定和性质.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )