试题
题目:
如图,△ABC中,∠ACB=90゜,CD⊥AB于D,AO平分∠BAC,交CD于O,E为AB上一点,且AE=AC,求证:OE∥BC.
答案
证明:在△AOC和△AOE中,
AC=AE
∠1=∠2
AO=AO
,
∴△AOC≌△AOE(SAS),
∴∠ACD=∠AEO,
∵△ABC中,∠ACB=90゜,CD⊥AB,
∴∠ACD+∠BCD=∠BCD+∠B=90°,
∴∠ACD=∠B,
∴∠AEO=∠B,
∴OE∥BC.
证明:在△AOC和△AOE中,
AC=AE
∠1=∠2
AO=AO
,
∴△AOC≌△AOE(SAS),
∴∠ACD=∠AEO,
∵△ABC中,∠ACB=90゜,CD⊥AB,
∴∠ACD+∠BCD=∠BCD+∠B=90°,
∴∠ACD=∠B,
∴∠AEO=∠B,
∴OE∥BC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由AO平分∠BAC,可直接利用∠1=∠2,证△AOC≌△AOE,可得∠ACD=∠B,又由△ABC中,∠ACB=90゜,CD⊥AB,可证得∠ACD=∠B=∠AEO,继而证得OE∥BC.
此题考查了全等三角形的判定与性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )