试题
题目:
如图,四边形ABCE中,AB=BC,AB⊥BC,CE⊥AE,BD⊥AE于D,求证:BD-CE=AD.
答案
证明:过C作CF⊥BD于F,则∠DBC+∠BCF=90°,
∵BD⊥AE,CE⊥AE,
∴四边形CEDF是矩形,
∴CE=DF,CF=DE,
∵∠ABC=90°,
∴∠ABD+∠CBD=90°,
∴∠BCF=∠ABD,
∵CE⊥AE,BD⊥AE,
∴∠ADB=∠BFC=90°,
在△ABD与△BCF中,
∠ADB=∠BFC=90°
∠BCF=∠ABD
AB=BC
,
∴△ABD≌△BCF(AAS),
∴BD=CF,BF=AD,
∵BF=BD-DF=BD-CE,
∴BD-CE=AD.
证明:过C作CF⊥BD于F,则∠DBC+∠BCF=90°,
∵BD⊥AE,CE⊥AE,
∴四边形CEDF是矩形,
∴CE=DF,CF=DE,
∵∠ABC=90°,
∴∠ABD+∠CBD=90°,
∴∠BCF=∠ABD,
∵CE⊥AE,BD⊥AE,
∴∠ADB=∠BFC=90°,
在△ABD与△BCF中,
∠ADB=∠BFC=90°
∠BCF=∠ABD
AB=BC
,
∴△ABD≌△BCF(AAS),
∴BD=CF,BF=AD,
∵BF=BD-DF=BD-CE,
∴BD-CE=AD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
过C作CF⊥BD于F,通过AAS证明△ABD≌△BCF,根据全等三角形的性质以及边的和差关系即可证明BD-CE=AD.
考查了全等三角形的判定与性质,矩形的判定与性质,解题的关键是证明△ABD≌△BCF.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )