试题
题目:
(2013·静海县一模)如图,已知△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,F是AD和BE的交点,CD=4,则线段DF的长度为
4
4
.
答案
4
解:∵AD⊥BC,BE⊥AC,
∴∠ADC=∠ADB=∠BEA=90°,
∴∠CAD+∠AFE=90°,∠BFD+∠DBF=90°,
∵∠AFE=∠DFB,
∴∠CAD=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD,
在△BDF和△BDC中
∠FBD=∠DAC
BD=AD
∠BDF=∠ADC
∴△BDF≌△ADC(ASA),
∴DF=DC=4,
故答案为:4.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
求出AD=BD,求出∠ADC=∠ADB=90°,∠CAD=∠FBD,根据ASA证△BDF≌△BDC,根据全等三角形的性质推出DF=DC即可.
本题考查了垂直定义,三角形内角和定理,全等三角形的性质和判定,定义三角形的判定的应用,主要考查学生的推理能力.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )