试题
题目:
(2004·四川)如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:
①②④
①②④
.
答案
①②④
解:①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到 OP=OP′;
②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到 OP=OP′;
④PP′⊥OC,符合ASA,可得二三角形全等,从而得到 OP=OP′;
③中给的条件是边边角,全等三角形判定中没有这个定理.
故填①②④.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
要得到OP=OP′就要证明两三角形全等,现有的条件为有一对角相等,一条公共边,缺少角,于是答案可得.
本题考查了全等三角形的判定与性质;转化为添加条件使三角形全等是正确解答本题的关键.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )