试题
题目:
如图,A,F和B三点在一条直线上,CF⊥AB于F,AF=FH,CF=FB.求证:BE⊥AC.
答案
证明:∵AF=FH,CF=FB,∠AFC=∠BFC=90°,
∴△ACF≌△HBF(SAS),
∴∠B=∠C,
∵∠B+∠BHF=90°,∠BHF=∠CHE,
∴∠CHE+∠C=90°,
∴BE⊥AC.
证明:∵AF=FH,CF=FB,∠AFC=∠BFC=90°,
∴△ACF≌△HBF(SAS),
∴∠B=∠C,
∵∠B+∠BHF=90°,∠BHF=∠CHE,
∴∠CHE+∠C=90°,
∴BE⊥AC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由SAS可得△ACF≌△HBF,得出∠B=∠C,进而通过角之间的转化即可得出结论.
本题主要考查了全等三角形的判定及性质,能够利用全等三角形的性质解决一些简单的证明问题.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )