试题
题目:
在数学活动课上,小明提出一个问题:“如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是多少度”大家经过了一番热烈的讨论交流之后,小雨第一个得出了正确结论,你知道他说的是( )
A.20°
B.35°
C.55°
D.70°
答案
B
解:延长DM交AB的延长线于E,连接AM.
∵∠B=∠C=90°,M是BC的中点,
∴∠MBE=∠C,CM=BM,
又∵∠CMD=∠BME(对顶角相等),
∴△DCM≌△EBM(ASA),
∴CD=BE,∠CDM=∠BEM,DM=EM,
∵∠ADM=∠CDM,
∴∠ADM=∠BEM,
∴AD=AE,
又∵DM=EM,
∴AM⊥DE,∠BAM=∠DAM,
∴∠DAM=90°-∠ADM,∠CMD=90°-∠CDM=35°,
∴∠DAM=∠CDM=35°
∴∠BAM=35°.
故选B.
考点梳理
考点
分析
点评
梯形;全等三角形的判定与性质.
延长DM交AB的延长线于E,连接AM.根据ASA,可以证明△DCM≌△EBM,再根据所求和已知角平分线求得AM⊥DE,∠BAM=∠DAM,∴∠DAM=90°-∠ADM=∠CMD.
注意梯形中常见的辅助线:当出现一腰的中点时,连接该点和一个顶点并延长,构造全等三角形.此题要能够进一步发现等腰三角形和直角三角形.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )