试题

题目:
(2007·宿迁)已知样本x1,x2,x3,…,xn的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2xn+3的方差是(  )



答案
D
解:设样本x1,x2,x3,…,xn的平均数为m,
则其方差为S12=
1
n
[(x1-m)2+(x2-m)2+…+(xn-m)2]=1,
则样本2x1+3,2x2+3,2x3+3,…,2xn+3的平均数为2m,其方差为S22=4S12=4.
故选D.
考点梳理
方差.
根据方差的意义分析,数据都加3,方差不变,原数据都乘2,则方差是原来的4倍.
本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…xn,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.
计算题;压轴题.
找相似题