试题
题目:
如图,∠POQ=90°,边长为2的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,则A到OP的距离分别为
3
3
.
答案
3
解:作AE⊥PO,
∵∠OBC+∠ABE=90°,∠OBC+∠OCB=90°,
∴∠ABE=∠OCB,
在△AEB和△BOC中,
AB=BC
∠ABE=∠OCB
∠AEB=∠BOC
,
∴△AEB≌△BOC,
∴OB=AE,
在直角△OBC中,∠OBC=30°,
∴BC=2CO=2,CO=1,
BO=
BC
2
-
CO
2
=
3
CO=
3
,
∴AE=
3
.
故答案为
3
.
考点梳理
考点
分析
点评
专题
正方形的性质;含30度角的直角三角形;勾股定理.
作AE⊥BO,可证△AEB≌△BOC,得AE=BO,根据直角△OBC中,∠OBC=30°,可以求得BO,根据BO=AE可以解题.
本题考查了正方形各边相等的性质,考查了直角三角形中勾股定理的运用,考查了全等三角形的判定,本题中求证AE=BO是解题的关键.
计算题;证明题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )