试题
题目:
M是正方形ABCD内一点,∠MAC=∠MCD=19°,则∠AMC=
135°
135°
.
答案
135°
解:由题意知:∠MAC=∠MCD=19°
∵正方形中对角线即角平分线,
故∠ACM=45°-∠MCD,
∴∠ACM+∠CAM=45°-∠MCD+∠MAC=45°,
∴∠AMC=180°-45°=135°,
故答案为135°.
考点梳理
考点
分析
点评
专题
正方形的性质.
AC为正方形的对角线,故AC为角平分线,已知∠MAC=∠MCD=19°,可以证明∠MAC+∠MCA=45°,在△ACM中,根据三角形内角和为180°,可以求∠AMC的大小.
本题考查了正方形对角线即角平分线的性质,考查了三角形内角和为180°的性质,本题中求∠ACM+∠CAM=45°是解题的关键.
计算题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )