试题
题目:
(2011·深圳模拟)如图,E是正方形ABCD对角线BD上的一点,
(1)求证:AE=CE.
(2)若AD=
2
2
,∠BCE=15°,求AE的长.
答案
(1)证明:∵四边形ABCD是正方形
∴AB=CB
∵BD是正方形ABCD的对角线
∴∠ABE=∠CBE=45°
∵BE=BE
∴△ABE≌△CBE
∴AE=CE
(2)解:连接AC,交BD于点O
∵四边形ABCD是正方形
∴∠DAO=∠BAO=45°,∠AOE=90°
∴AO=2
∵△ABE≌△CBE
∴∠BAE=∠BCE=15°
∴∠EAO=30°
在Rt△EOA中,
cos∠EAO=
AO
AE
,
3
2
=
2
AE
,
AE=
4
3
3
(1)证明:∵四边形ABCD是正方形
∴AB=CB
∵BD是正方形ABCD的对角线
∴∠ABE=∠CBE=45°
∵BE=BE
∴△ABE≌△CBE
∴AE=CE
(2)解:连接AC,交BD于点O
∵四边形ABCD是正方形
∴∠DAO=∠BAO=45°,∠AOE=90°
∴AO=2
∵△ABE≌△CBE
∴∠BAE=∠BCE=15°
∴∠EAO=30°
在Rt△EOA中,
cos∠EAO=
AO
AE
,
3
2
=
2
AE
,
AE=
4
3
3
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
(1)根据四边形ABCD是正方形,求证AB=CB,再求证△ABE≌△CBE即可得出结论
(2)连接AC,交BD于点O,根据四边形ABCD是正方形,求证△ABE≌△CBE,再利用锐角三角函数值即可求解.
本题主要考查学生对全等三角形的判定和性质,以及正方形的性质等知识点的理解和掌握,难易程度适中,适合学生的训练.
计算题;证明题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )