试题
题目:
如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有
4
4
个直角三角形.
答案
4
解:∵正方形各内角为直角,
∴△ABE、△CBF、△DEF为直角三角形,
图中,BE=
AE
2
+
AB
2
=
20
,
EF=
DE
2
+
DF
2
=
5
,
BF=
CB
2
+
CF
2
=
25
,
∴BE
2
+EF
2
=BF
2
,
即△BEF为直角三角形,
故图中有4个直角三角形.
故答案为:4.
考点梳理
考点
分析
点评
专题
正方形的性质;勾股定理;勾股定理的逆定理.
根据正方形各内角为直角的性质,可以证明△ABE、△CBF、△DEF为直角三角形,分别求其斜边,即BE,EF,BF的值,根据边的长度和勾股定理的逆定理可以判定△BEF为直角三角形,即可解题.
本题考查了勾股定理在直角三角形中的应用,勾股定理的逆定理判定直角三角形,正方形各边长相等,各内角为直角的性质,本题中求证△BEF是直角三角形是解题的关键.
计算题;证明题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )