题目:
(2011·朝阳区二模)阅读材料并解答问题
如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,可以得出结论△ABC的面积与△AEG的面积相等.
(1)在图①中的△ABC的直角边AB上任取一点H,连接CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连接EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为
相等
相等
.
(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是
.
(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是
.
答案
相等

解:(1)作GM⊥HE,
∵∠MHG=90°-∠GHA,
∠CHA=90°-∠GHA,
∴∠MHG=∠CHA,
∵∠HMG=∠CAH=90°,
CH=HG,
∴△CHA≌△HGM,
∴CA=MG,
∴S
△HBC=
×BH×AC,
S
HEG=
HE×MG,
∴△HBC的面积与△HEG的面积的大小相等,
故答案为:相等;(1分)
(2)延长CD,作AB⊥CD,延长EC,作FG⊥EC,
运用(1)中证明思路即可得出△ABC≌△CGF,
∴AB=GF,
即可得出S
△ECF=S
△ADC,
∴同理可得出相邻三角形之间面积相等,
∴若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是
,
故答案为:
;(3分)
(3)运用(1)中证明思路,延长MN,作HK⊥MN,
运用三角形面积求法得出四个三角形面积相等,
∵四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,
∴图中阴影部分的面积是
,
故答案为:
.(5分)