试题
题目:
如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF,若∠BEC=60°,则∠EFD的度数为
15°
15°
.
答案
15°
解:在△BCE和△DCF中,
由
CE=CF
∠BCE=∠DCF
BC=DC
,
可证△BCE≌△DCF,
∴∠CFD=∠BEC=60°,
∵CE=CF,且∠DCF=90°,
∴∠CFE=45°,
∴∠EFD=∠CFD-∠CFE=15°,
故答案为 15°.
考点梳理
考点
分析
点评
专题
正方形的性质;等腰三角形的性质.
要求∠EFD的度数,求∠CFD和∠CFE即可,因为CE=CF,所以∠CFE=45°,要求∠CFD,求△BCE≌△DCF即可.
本题考查了全等三角形的证明,考查了等腰直角三角形底角相等的性质,解本题的关键是△BCE≌△DCF的求证.
计算题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )